Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.391
Filtrar
1.
Neuropsychopharmacology ; 49(6): 915-923, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38374364

RESUMO

Opioid use disorder is a chronic relapsing disorder encompassing misuse, dependence, and addiction to opioid drugs. Long term maintenance of associations between the reinforcing effects of the drug and the cues associated with its intake are a leading cause of relapse. Indeed, exposure to the salient drug-associated cues can lead to drug cravings and drug seeking behavior. The dorsal hippocampus (dHPC) and locus coeruleus (LC) have emerged as important structures for linking the subjective rewarding effects of opioids with environmental cues. However, their role in cue-induced reinstatement of opioid use remains to be further elucidated. In this study, we showed that chemogenetic inhibition of excitatory dHPC neurons during re-exposure to drug-associated cues significantly attenuates cue-induced reinstatement of morphine-seeking behavior. In addition, the same manipulation reduced reinstatement of sucrose-seeking behavior but failed to alter memory recall in the object location task. Finally, intact activity of tyrosine hydroxylase (TH) LC-dHPCTh afferents is necessary to drive cue induced reinstatement of morphine-seeking as inhibition of this pathway blunts cue-induced drug-seeking behavior. Altogether, these studies show an important role of the dHPC and LC-dHPCTh pathway in mediating cue-induced reinstatement of opioid seeking.


Assuntos
Sinais (Psicologia) , Comportamento de Procura de Droga , Hipocampo , Locus Cerúleo , Autoadministração , Animais , Locus Cerúleo/efeitos dos fármacos , Locus Cerúleo/metabolismo , Masculino , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Ratos , Feminino , Comportamento de Procura de Droga/efeitos dos fármacos , Comportamento de Procura de Droga/fisiologia , Morfina/farmacologia , Morfina/administração & dosagem , Ratos Sprague-Dawley , Vias Neurais/efeitos dos fármacos , Vias Neurais/fisiologia , Analgésicos Opioides/farmacologia , Analgésicos Opioides/administração & dosagem , Transtornos Relacionados ao Uso de Opioides/fisiopatologia , Extinção Psicológica/efeitos dos fármacos , Extinção Psicológica/fisiologia , Condicionamento Operante/efeitos dos fármacos , Condicionamento Operante/fisiologia
2.
Neuropsychopharmacology ; 49(6): 924-932, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38326458

RESUMO

The rewarding effects of stimulant drugs such as methylphenidate (MP) depend crucially on how fast they raise dopamine in the brain. Yet how the rate of drug-induced dopamine increases impacts brain network communication remains unresolved. We manipulated route of MP administration to generate fast versus slow dopamine increases. We hypothesized that fast versus slow dopamine increases would result in a differential pattern of global brain connectivity (GBC) in association with regional levels of dopamine D1 receptors, which are critical for drug reward. Twenty healthy adults received MP intravenously (0.5 mg/kg; fast dopamine increases) and orally (60 mg; slow dopamine increases) during simultaneous [11C]raclopride PET-fMRI scans (double-blind, placebo-controlled). We tested how GBC was temporally associated with slow and fast dopamine increases on a minute-to-minute basis. Connectivity patterns were strikingly different for slow versus fast dopamine increases, and whole-brain spatial patterns were negatively correlated with one another (rho = -0.54, pspin < 0.001). GBC showed "fast>slow" associations in dorsal prefrontal cortex, insula, posterior thalamus and brainstem, caudate and precuneus; and "slow>fast" associations in ventral striatum, orbitofrontal cortex, and frontopolar cortex (pFDR < 0.05). "Fast>slow" GBC patterns showed significant spatial correspondence with D1 receptor availability (estimated via normative maps of [11C]SCH23390 binding; rho = 0.22, pspin < 0.05). Further, hippocampal GBC to fast dopamine increases was significantly negatively correlated with self-reported 'high' ratings to intravenous MP across individuals (r(19) = -0.68, pbonferroni = 0.015). Different routes of MP administration produce divergent patterns of brain connectivity. Fast dopamine increases are uniquely associated with connectivity patterns that have relevance for the subjective experience of drug reward.


Assuntos
Encéfalo , Dopamina , Imageamento por Ressonância Magnética , Metilfenidato , Tomografia por Emissão de Pósitrons , Racloprida , Humanos , Masculino , Adulto , Feminino , Encéfalo/efeitos dos fármacos , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Dopamina/metabolismo , Metilfenidato/farmacologia , Metilfenidato/administração & dosagem , Método Duplo-Cego , Adulto Jovem , Racloprida/farmacologia , Estimulantes do Sistema Nervoso Central/farmacologia , Estimulantes do Sistema Nervoso Central/administração & dosagem , Receptores de Dopamina D1/metabolismo , Vias Neurais/efeitos dos fármacos , Vias Neurais/diagnóstico por imagem , Antagonistas de Dopamina/farmacologia , Antagonistas de Dopamina/administração & dosagem , Mapeamento Encefálico
3.
Mol Psychiatry ; 28(4): 1571-1584, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36385168

RESUMO

Prenatal alcohol exposure is the foremost preventable etiology of intellectual disability and leads to a collection of diagnoses known as Fetal Alcohol Spectrum Disorders (FASD). Alcohol (EtOH) impacts diverse neural cell types and activity, but the precise functional pathophysiological effects on the human fetal cerebral cortex are unclear. Here, we used human cortical organoids to study the effects of EtOH on neurogenesis and validated our findings in primary human fetal neurons. EtOH exposure produced temporally dependent cellular effects on proliferation, cell cycle, and apoptosis. In addition, we identified EtOH-induced alterations in post-translational histone modifications and chromatin accessibility, leading to impairment of cAMP and calcium signaling, glutamatergic synaptic development, and astrocytic function. Proteomic spatial profiling of cortical organoids showed region-specific, EtOH-induced alterations linked to changes in cytoskeleton, gliogenesis, and impaired synaptogenesis. Finally, multi-electrode array electrophysiology recordings confirmed the deleterious impact of EtOH on neural network formation and activity in cortical organoids, which was validated in primary human fetal tissues. Our findings demonstrate progress in defining the human molecular and cellular phenotypic signatures of prenatal alcohol exposure on functional neurodevelopment, increasing our knowledge for potential therapeutic interventions targeting FASD symptoms.


Assuntos
Córtex Cerebral , Etanol , Vias Neurais , Neurogênese , Neurônios , Organoides , Feminino , Humanos , Masculino , Gravidez , Astrócitos/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Córtex Cerebral/citologia , Montagem e Desmontagem da Cromatina/efeitos dos fármacos , Montagem e Desmontagem da Cromatina/genética , Epigênese Genética/efeitos dos fármacos , Epigênese Genética/genética , Etanol/farmacologia , Transtornos do Espectro Alcoólico Fetal/etiologia , Transtornos do Espectro Alcoólico Fetal/genética , Feto/citologia , Perfilação da Expressão Gênica , Rede Nervosa/efeitos dos fármacos , Transtornos do Neurodesenvolvimento/induzido quimicamente , Transtornos do Neurodesenvolvimento/genética , Transtornos do Neurodesenvolvimento/patologia , Neurogênese/efeitos dos fármacos , Neurônios/citologia , Neurônios/efeitos dos fármacos , Neurônios/patologia , Organoides/citologia , Organoides/efeitos dos fármacos , Organoides/patologia , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Efeitos Tardios da Exposição Pré-Natal/genética , Proteômica , Sinapses/efeitos dos fármacos , Vias Neurais/efeitos dos fármacos
4.
Reprod Biol Endocrinol ; 20(1): 19, 2022 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-35081973

RESUMO

BACKGROUND: Nitric oxide and GnRH are biological factors that participate in the regulation of reproductive functions. To our knowledge, there are no studies that link NO and GnRH in the sympathetic ganglia. Thus, the aim of the present work was to investigate the influence of NO on GnRH release from the coeliac ganglion and its effect on luteal regression at the end of pregnancy in the rat. METHODS: The ex vivo system composed by the coeliac ganglion, the superior ovarian nerve, and the ovary of rats on day 21 of pregnancy was incubated for 180 min with the addition, into the ganglionic compartment, of L-NG-nitro arginine methyl ester (L-NAME), a non-selective NO synthase inhibitor. The control group consisted in untreated organ systems. RESULTS: The addition of L-NAME in the coeliac ganglion compartment decreased NO as well as GnRH release from the coeliac ganglion. In the ovarian compartment, and with respect to the control group, we observed a reduced release of GnRH, NO, and noradrenaline, but an increased production of progesterone, estradiol, and expression of their limiting biosynthetic enzymes, 3ß-HSD and P450 aromatase, respectively. The inhibition of NO production by L-NAME in the coeliac ganglion compartment also reduced luteal apoptosis, lipid peroxidation, and nitrotyrosine, whereas it increased the total antioxidant capacity within the corpora lutea. CONCLUSION: Collectively, the results indicate that NO production by the coeliac ganglion modulates the physiology of the ovary and luteal regression during late pregnancy in rats.


Assuntos
Corpo Lúteo/inervação , Corpo Lúteo/metabolismo , Hormônio Liberador de Gonadotropina/metabolismo , Óxido Nítrico/metabolismo , Animais , Interações Medicamentosas , Feminino , Gânglios Simpáticos/efeitos dos fármacos , Gânglios Simpáticos/metabolismo , Idade Gestacional , Hormônio Liberador de Gonadotropina/farmacologia , Sistema Nervoso/efeitos dos fármacos , Sistema Nervoso/metabolismo , Vias Neurais/efeitos dos fármacos , Vias Neurais/metabolismo , Óxido Nítrico/farmacologia , Ovário/inervação , Ovário/metabolismo , Gravidez , Ratos
5.
J Neuroendocrinol ; 34(1): e13075, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34905237

RESUMO

Thyroid disease is known to affect brain metabolism and cognitive function, although the recovery of thyroid-induced brain functional changes after treatment remains unclear. We aimed to investigate the alteration in brain functional connectivity and its correlation with neuropsychological variables in hyperthyroid patients before and after anti-thyroid treatment using a resting-state functional magnetic resonance imaging (rsfMRI) technique. This is a follow-up rsfMRI study of previous work that showed impaired brain functional connectivity in hyperthyroid patients compared to healthy controls. We included rsfMRI and neuropsychological data from 21 hyperthyroid patients out of an original cohort of 28 patients, before and after anti-thyroid treatment for 30 weeks. Functional connectivity analysis and neuropsychological scores were compared using paired t tests in patients at baseline and at follow-up. Patients showed an improvement in some of the memory (p < .05) and executive, visuospatial and motor (p < .001) functions after treatment, and also showed increased functional connectivity in the regions of the right fronto-parietal network, left fronto-parietal network, and default mode network (DMN) (p < .05). At follow-up, the functional connectivity of the right fronto-parietal network showed a significantly positive correlation with the recognition of objects memory score. The overall findings suggest that anti-thyroid treatment with carbimazole improves the functional connectivity within some of the resting state networks in the hyperthyroid patients, whereas the remaining networks still show impairment.


Assuntos
Antitireóideos/uso terapêutico , Encéfalo/efeitos dos fármacos , Hipertireoidismo/tratamento farmacológico , Vias Neurais/efeitos dos fármacos , Adulto , Encéfalo/citologia , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico , Carbimazol/uso terapêutico , Cognição/efeitos dos fármacos , Estudos de Coortes , Função Executiva/efeitos dos fármacos , Feminino , Humanos , Hipertireoidismo/diagnóstico , Hipertireoidismo/fisiopatologia , Hipertireoidismo/psicologia , Índia , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Vias Neurais/diagnóstico por imagem , Testes Neuropsicológicos
6.
Neuropharmacology ; 202: 108859, 2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34710468

RESUMO

Nicotine, the addictive component of tobacco, has bivalent rewarding and aversive properties. Recently, the lateral habenula (LHb), a structure that controls ventral tegmental area (VTA) dopamine (DA) function, has attracted attention as it is potentially involved in the aversive properties of drugs of abuse. Hitherto, the LHb-modulation of nicotine-induced VTA neuronal activity in vivo is unknown. Using standard single-extracellular recording in anesthetized rats, we observed that intravenous administration of nicotine hydrogen tartrate (25-800 µg/kg i.v.) caused a dose-dependent increase in the basal firing rate of the LHb neurons of nicotine-naïve rats. This effect underwent complete desensitization in chronic nicotine (6 mg/kg/day for 14 days)-treated animals. As previously reported, acute nicotine induced an increase in the VTA DA neuronal firing rate. Interestingly, only neurons located medially (mVTA) but not laterally (latVTA) within the VTA were responsive to acute nicotine. This pattern of activation was reversed by chronic nicotine exposure which produced the selective increase of latVTA neuronal activity. Acute lesion of the LHb, similarly to chronic nicotine treatment, reversed the pattern of DA cell activation induced by acute nicotine increasing latVTA but not mVTA neuronal activity. Our evidence indicates that LHb plays an important role in mediating the effects of acute and chronic nicotine within the VTA by activating distinct subregional responses of DA neurons. The LHb/VTA modulation might be part of the neural substrate of nicotine aversive properties. By silencing the LHb chronic nicotine could shift the balance of motivational states toward the reward.


Assuntos
Dopamina/fisiologia , Eletroencefalografia/métodos , Habenula/efeitos dos fármacos , Habenula/fisiopatologia , Vias Neurais/efeitos dos fármacos , Vias Neurais/fisiopatologia , Nicotina/efeitos adversos , Área Tegmentar Ventral/efeitos dos fármacos , Área Tegmentar Ventral/fisiopatologia , Animais , Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/fisiologia , Relação Dose-Resposta a Droga , Masculino , Nicotina/farmacologia , Ratos Sprague-Dawley , Recompensa
7.
J Psychopharmacol ; 36(1): 74-84, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34189985

RESUMO

BACKGROUND: Psilocybin is a psychedelic drug that has shown lasting positive effects on clinical symptoms and self-reported well-being following a single dose. There has been little research into the long-term effects of psilocybin on brain connectivity in humans. AIM: Evaluate changes in resting-state functional connectivity (RSFC) at 1 week and 3 months after one psilocybin dose in 10 healthy psychedelic-naïve volunteers and explore associations between change in RSFC and related measures. METHODS: Participants received 0.2-0.3 mg/kg psilocybin in a controlled setting. Participants completed resting-state functional magnetic resonance imaging (fMRI) scans at baseline, 1-week and 3-month post-administration and [11C]Cimbi-36 PET scans at baseline and 1 week. We examined changes in within-network, between-network and region-to-region RSFC. We explored associations between changes in RSFC and psilocybin-induced phenomenology as well as changes in psychological measures and neocortex serotonin 2A receptor binding. RESULTS: Psilocybin was well tolerated and produced positive changes in well-being. At 1 week only, executive control network (ECN) RSFC was significantly decreased (Cohen's d = -1.73, pFWE = 0.010). We observed no other significant changes in RSFC at 1 week or 3 months, nor changes in region-to-region RSFC. Exploratory analyses indicated that decreased ECN RSFC at 1 week predicted increased mindfulness at 3 months (r = -0.65). CONCLUSIONS: These findings in a small cohort indicate that psilocybin affects ECN function within the psychedelic 'afterglow' period. Our findings implicate ECN modulation as mediating psilocybin-induced, long-lasting increases in mindfulness. Although our findings implicate a neural pathway mediating lasting psilocybin effects, it is notable that changes in neuroimaging measures at 3 months, when personality changes are observed, remain to be identified.


Assuntos
Encéfalo/efeitos dos fármacos , Função Executiva/efeitos dos fármacos , Alucinógenos/farmacologia , Psilocibina/farmacologia , Adulto , Benzilaminas , Encéfalo/diagnóstico por imagem , Relação Dose-Resposta a Droga , Feminino , Seguimentos , Alucinógenos/administração & dosagem , Humanos , Imageamento por Ressonância Magnética , Masculino , Vias Neurais/efeitos dos fármacos , Fenetilaminas , Tomografia por Emissão de Pósitrons , Psilocibina/administração & dosagem , Fatores de Tempo , Adulto Jovem
8.
J Neurophysiol ; 126(6): 2130-2137, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34851753

RESUMO

Pupil diameter fluctuates in association with changes in brain states induced by the neuromodulator systems. However, it remains unclear how the neuromodulator systems control the activity of the iris sphincter (constrictor) and dilator muscles to change the pupil size. The present study compared temporal patterns of pupil dilation during movement when each muscle was pharmacologically manipulated in the human eye. When the iris sphincter muscle was blocked with tropicamide, the latency of pupil dilation was delayed and the magnitude of pupil dilation was reduced during movement. In contrast, when the iris dilator muscle was continuously stimulated with phenylephrine, the latency and magnitude of rapid pupil dilation did not differ from the untreated control eye, but sustained pupil dilation was reduced until the end of movement. These results suggest that the iris sphincter muscle, which is under the control of the parasympathetic pathway, is quickly modulated by the neuromodulator system and plays a major role in rapid pupil dilation. However, the iris dilator muscle receives signals from the neuromodulator system with a slow latency and is involved in maintaining sustained pupil dilation.NEW & NOTEWORTHY By pharmacologically manipulating the pupil dilator and constrictor muscles of human eye separately, we found that the pupil constrictor muscle is a primary controller of rapid pupil dilation upon brain arousal. However, the pupil dilator muscle, which is innervated by the sympathetic nervous system and is generally considered as a major regulator of pupil dilation, is not involved in rapid pupil dilation, but was involved in long-lasting pupil dilation.


Assuntos
Nível de Alerta/fisiologia , Músculo Liso/fisiologia , Midriáticos/farmacologia , Sistema Nervoso Parassimpático/fisiologia , Pupila/fisiologia , Adulto , Feminino , Humanos , Masculino , Músculo Liso/efeitos dos fármacos , Vias Neurais/efeitos dos fármacos , Vias Neurais/fisiologia , Sistema Nervoso Parassimpático/efeitos dos fármacos , Fenilefrina/farmacologia , Pupila/efeitos dos fármacos , Tropicamida/farmacologia , Adulto Jovem
9.
Brain Res ; 1773: 147705, 2021 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-34744015

RESUMO

Saporin conjugated to oxytocin (OXY-SAP) destroys neurons expressing oxytocinergic receptors. When injected unilaterally in the substantia nigra of male rats, OXY-SAP causes a dose-dependent decrease up to 55 % in nigral Tyrosine Hydroxylase (TH)-immunoreactivity compared to control mock peptide BLANK-SAP- and PBS-treated rats or the contralateral substantia nigra. TH decrease was parallel to a dopamine content decrease in the ipsilateral striatum compared to BLANK-SAP- or PBS-treated rats or the contralateral striatum. OXY-SAP-treated rats showed a small but significant increase of locomotor activity 28 days after intranigral injection in the Open field test compared to BLANK-SAP- or PBS-treated rats, in line with an inhibitory role of nigral oxytocin on locomotor activity. OXY-SAP-, but not BLANK-SAP- or PBS-treated rats, also showed marked dose-dependent rotational turning ipsilateral to the injected substantia nigra when challenged with d-amphetamine, but not with apomorphine. Under isoflurane anesthesia OXY-SAP-treated rats showed levels of extracellular dopamine in the dialysate from the ipsilateral striatum only half those of BLANK-SAP- or PBS-treated rats or the contralateral striatum. When treated with d-amphetamine, OXY-SAP_60/120 rats showed increased extracellular dopamine levels in the dialysate from the ipsilateral striatum two third/one third only of those found in BLANK-SAP- or PBS-treated rats or the contralateral striatum, respectively. These results show that OXY-SAP destroys nigrostriatal dopaminergic neurons expressing oxytocin receptors leading to a reduced striatal dopamine function.


Assuntos
Corpo Estriado/efeitos dos fármacos , Neurônios Dopaminérgicos/efeitos dos fármacos , Atividade Motora/efeitos dos fármacos , Ocitocina/análogos & derivados , Saporinas/farmacologia , Substância Negra/efeitos dos fármacos , Animais , Comportamento Animal/efeitos dos fármacos , Corpo Estriado/metabolismo , Dopamina/metabolismo , Neurônios Dopaminérgicos/metabolismo , Masculino , Vias Neurais/efeitos dos fármacos , Vias Neurais/metabolismo , Ocitocina/farmacologia , Ratos , Comportamento Estereotipado/efeitos dos fármacos , Substância Negra/metabolismo
10.
Cell Rep ; 37(6): 109978, 2021 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-34758316

RESUMO

The prefrontal cortex (PFC) regulates a wide range of sensory experiences. Chronic pain is known to impair normal neural response, leading to enhanced aversion. However, it remains unknown how nociceptive responses in the cortex are processed at the population level and whether such processes are disrupted by chronic pain. Using in vivo endoscopic calcium imaging, we identify increased population activity in response to noxious stimuli and stable patterns of functional connectivity among neurons in the prelimbic (PL) PFC from freely behaving rats. Inflammatory pain disrupts functional connectivity of PFC neurons and reduces the overall nociceptive response. Interestingly, ketamine, a well-known neuromodulator, restores the functional connectivity among PL-PFC neurons in the inflammatory pain model to produce anti-aversive effects. These results suggest a dynamic resource allocation mechanism in the prefrontal representations of pain and indicate that population activity in the PFC critically regulates pain and serves as an important therapeutic target.


Assuntos
Agentes Aversivos/farmacologia , Inflamação/fisiopatologia , Ketamina/farmacologia , Vias Neurais/efeitos dos fármacos , Dor Nociceptiva/tratamento farmacológico , Córtex Pré-Frontal/efeitos dos fármacos , Animais , Antagonistas de Aminoácidos Excitatórios/farmacologia , Masculino , Vias Neurais/metabolismo , Dor Nociceptiva/metabolismo , Dor Nociceptiva/patologia , Córtex Pré-Frontal/metabolismo , Córtex Pré-Frontal/patologia , Ratos , Ratos Sprague-Dawley
11.
Int J Mol Sci ; 22(20)2021 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-34681941

RESUMO

Dopamine is likely the most studied modulatory neurotransmitter, in great part due to characteristic motor deficits in Parkinson's disease that arise after the degeneration of the dopaminergic neurons in the substantia nigra pars compacta (SNc). The SNc, together with the ventral tegmental area (VTA), play a key role modulating motor responses through the basal ganglia. In contrast to the large amount of existing literature addressing the mammalian dopaminergic system, comparatively little is known in other vertebrate groups. However, in the last several years, numerous studies have been carried out in basal vertebrates, allowing a better understanding of the evolution of the dopaminergic system, especially the SNc/VTA. We provide an overview of existing research in basal vertebrates, mainly focusing on lampreys, belonging to the oldest group of extant vertebrates. The lamprey dopaminergic system and its role in modulating motor responses have been characterized in significant detail, both anatomically and functionally, providing the basis for understanding the evolution of the SNc/VTA in vertebrates. When considered alongside results from other early vertebrates, data in lampreys show that the key role of the SNc/VTA dopaminergic neurons modulating motor responses through the basal ganglia was already well developed early in vertebrate evolution.


Assuntos
Dopamina/farmacologia , Neurônios Dopaminérgicos/efeitos dos fármacos , Atividade Motora/efeitos dos fármacos , Vias Neurais/efeitos dos fármacos , Receptores de Dopamina D1/metabolismo , Receptores de Dopamina D2/metabolismo , Animais , Cardiotônicos/farmacologia
12.
Neurosci Lett ; 764: 136201, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34469712

RESUMO

Basolateral amygdala (BLA) nuclei and their reciprocal connections with prelimbic (PL) and infralimbic (IL) regions of the medial prefrontal cortex (mPFC) are involved in the regulation of fear. 2-Heptanone is released in urine in stressed rats, and the olfactory detection of this odor produces immediate avoidance and alarm reactions and modifies neuronal activity in limbic connections in non-stressed rats. If 2-heptanone acts as a danger signal, then long-lasting actions would be expected. The aim of the present study was to investigate whether the forced inhalation of 2-heptanone modifies the response capacity of the BLA-mPFC circuit in the long term (48 h). Single-unit extracellular recordings were obtained from the PL and IL during electrical stimulation of the BLA (square-wave pulses; 1 ms, 20 µA, 0.3 Hz, 110 stimuli over a total duration of 360 s) in three groups of Wistar rats: control group (no sensory stimulation), unpredictable auditory stimulation group, and 2-heptanone stimulation group. A brief-latency (1 ms), short-duration (5 ms) paucisynaptic response followed BLA stimulation and was unaffected by any sensorial stimulation. The paucisynaptic response was followed by a mostly inhibitory and long-lasting (>750 ms) afterdischarge in the control and auditory stimulation groups. In the 2-heptanone group, the inhibitory afterdischarge shifted to an excitatory afterdischarge after ∼250 ms in the PL and after ∼500 ms in the IL. Importantly, the rats that were included in this study were born in local housing facilities. Thus, these animals were never in contact with predators and instead in contact with only conspecifics. These results indicate that the forced inhalation of 2-heptanone is able to modify BLA-mPFC responsivity in the long term. 2-Heptanone decreases inhibitory control of the amygdala over mPFC activity. Disinhibition of the mPFC may lead to the adaptive expression of defensive behaviors, even in animals that are not in the presence of predators.


Assuntos
Aprendizagem da Esquiva/efeitos dos fármacos , Complexo Nuclear Basolateral da Amígdala/efeitos dos fármacos , Medo/efeitos dos fármacos , Cetonas/administração & dosagem , Córtex Pré-Frontal/efeitos dos fármacos , Estimulação Acústica/métodos , Administração por Inalação , Animais , Aprendizagem da Esquiva/fisiologia , Complexo Nuclear Basolateral da Amígdala/fisiologia , Comportamento Animal/efeitos dos fármacos , Comportamento Animal/fisiologia , Medo/psicologia , Masculino , Vias Neurais/efeitos dos fármacos , Córtex Pré-Frontal/fisiologia , Ratos
13.
Neurobiol Dis ; 159: 105514, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34555537

RESUMO

Synchronized and properly balanced electrical activity of neurons is the basis for the brain's ability to process information, to learn, and to remember. In Alzheimer's disease (AD), which causes cognitive decline in patients, this synchronization and balance is disturbed by the accumulation of neuropathological biomarkers such as amyloid-beta peptide (Aß42). Failure of Aß42 clearance mechanisms as well as desynchronization of crucial neuronal classes such as fast-spiking interneurons (FSN) are root causes for the disruption of the cognition-relevant gamma brain rhythm (30-80 Hz) and consequent cognitive impairment observed in AD. Here we show that recombinant BRICHOS molecular chaperone domains from ProSP-C or Bri2, which interfere with Aß42 aggregation, can rescue the gamma rhythm. We demonstrate that Aß42 progressively decreases gamma oscillation power and rhythmicity, disrupts the inhibition/excitation balance in pyramidal cells, and desynchronizes FSN firing during gamma oscillations in the hippocampal CA3 network of mice. Application of the more efficacious Bri2 BRICHOS chaperone rescued the cellular and neuronal network performance from all ongoing Aß42-induced functional impairments. Collectively, our findings offer critical missing data to explain the importance of FSN for normal network function and underscore the therapeutic potential of Bri2 BRICHOS to rescue the disruption of cognition-relevant brain rhythms in AD.


Assuntos
Potenciais de Ação/efeitos dos fármacos , Proteínas Adaptadoras de Transdução de Sinal/farmacologia , Hipocampo/efeitos dos fármacos , Interneurônios/efeitos dos fármacos , Chaperonas Moleculares/farmacologia , Células Piramidais/efeitos dos fármacos , Potenciais de Ação/fisiologia , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Peptídeos beta-Amiloides , Animais , Modelos Animais de Doenças , Ritmo Gama , Hipocampo/fisiopatologia , Técnicas In Vitro , Interneurônios/fisiologia , Camundongos , Vias Neurais/efeitos dos fármacos , Vias Neurais/fisiopatologia , Fragmentos de Peptídeos , Domínios Proteicos , Proteína C Associada a Surfactante Pulmonar/metabolismo , Proteína C Associada a Surfactante Pulmonar/farmacologia , Células Piramidais/metabolismo , Células Piramidais/fisiologia , Proteínas Recombinantes
14.
BMC Anesthesiol ; 21(1): 234, 2021 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-34587905

RESUMO

BACKGROUND: Postoperative nausea and vomiting (PONV) as a clinically most common postoperative complication requires multimodal antiemetic medications targeting at a wide range of neurotransmitter pathways. Lacking of neurobiological mechanism makes this 'big little problem' still unresolved. We aim to investigate whether gut-vagus-brain reflex generally considered as one of four typical emetic neuronal pathways might be the primary mediator of PONV. METHODS: Three thousand two hundred twenty-three patients who underwent vagus nerve trunk resection (esophagectomy and gastrectomy) and non-vagotomy surgery (hepatectomy, pulmonary lobectomy and colorectomy) from December 2016 to January 2019 were enrolled. Thirty cases of gastrectomy with selective resection on the gastric branch of vagus nerve were also recruited. Nausea and intensity of vomiting was recorded within 24 h after the operation. RESULTS: PONV occurred in 11.9% of 1187 patients who underwent vagus nerve trunk resection and 28.7% of 2036 non-vagotomy patients respectively. Propensity score matching showed that vagotomy surgeries accounted for 19.9% of the whole PONV incidence, much less than that observed in the non-PONV group (35.1%, P <  0.01). Multivariate logistic regression result revealed that vagotomy was one of underlying factor that significantly involved in PONV (OR = 0.302, 95% CI, 0.237-0.386). Nausea was reported in 5.9% ~ 8.6% vagotomy and 12 ~ 17% non-vagotomy patients. Most vomiting were mild, being approximately 3% in vagotomy and 8 ~ 13% in non-vagotomy patients, while sever vomiting was much less experienced. Furthermore, lower PONV occurrence (10%) was also observed in gastrectomy undergoing selective vagotomy. CONCLUSION: Patients undergoing surgeries with vagotomy developed less PONV, suggesting that vagus nerve dependent gut-brain signaling might mainly contribute to PONV.


Assuntos
Analgesia/métodos , Eixo Encéfalo-Intestino/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Náusea e Vômito Pós-Operatórios/epidemiologia , Nervo Vago/efeitos dos fármacos , Nervo Vago/cirurgia , Encéfalo/fisiopatologia , Estudos de Coortes , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Vias Neurais/efeitos dos fármacos , Reflexo/efeitos dos fármacos
15.
Int J Mol Sci ; 22(15)2021 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-34361077

RESUMO

In mammalian reproduction, sexually active males seek female conspecifics, while estrous females try to approach males. This sex-specific response tendency is called sexual preference. In small rodents, sexual preference cues are mainly chemosensory signals, including pheromones. In this article, we review the physiological mechanisms involved in sexual preference for opposite-sex chemosensory signals in well-studied laboratory rodents, mice, rats, and hamsters of both sexes, especially an overview of peripheral sensory receptors, and hormonal and central regulation. In the hormonal regulation section, we discuss potential rodent brain bisexuality, as it includes neural substrates controlling both masculine and feminine sexual preferences, i.e., masculine preference for female odors and the opposite. In the central regulation section, we show the substantial circuit regulating sexual preference and also the influence of sexual experience that innate attractants activate in the brain reward system to establish the learned attractant. Finally, we review the regulation of sexual preference by neuropeptides, oxytocin, vasopressin, and kisspeptin. Through this review, we clarified the contradictions and deficiencies in our current knowledge on the neuroendocrine regulation of sexual preference and sought to present problems requiring further study.


Assuntos
Células Quimiorreceptoras/fisiologia , Vias Neurais/fisiologia , Atrativos Sexuais/farmacologia , Comportamento Sexual Animal/fisiologia , Animais , Células Quimiorreceptoras/efeitos dos fármacos , Feminino , Masculino , Vias Neurais/efeitos dos fármacos , Comportamento Sexual Animal/efeitos dos fármacos
16.
J Neurosci ; 41(39): 8103-8110, 2021 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-34385360

RESUMO

Entorhinal cortex neurons make monosynaptic connections onto distal apical dendrites of CA1 and CA2 pyramidal neurons through the perforant path (PP) projection. Previous studies show that differences in dendritic properties and synaptic input density enable the PP inputs to produce a much stronger excitation of CA2 compared with CA1 pyramidal neurons. Here, using mice of both sexes, we report that the difference in PP efficacy varies substantially as a function of presynaptic firing rate. Although a single PP stimulus evokes a 5- to 6-fold greater EPSP in CA2 compared with CA1, a brief high-frequency train of PP stimuli evokes a strongly facilitating postsynaptic response in CA1, with relatively little change in CA2. Furthermore, we demonstrate that blockade of NMDARs significantly reduces strong temporal summation in CA1 but has little impact on that in CA2. As a result of the differences in the frequency- and NMDAR-dependent temporal summation, naturalistic patterns of presynaptic activity evoke CA1 and CA2 responses with distinct dynamics, differentially tuning CA1 and CA2 responses to bursts of presynaptic firing versus single presynaptic spikes, respectively.SIGNIFICANCE STATEMENT Recent studies have demonstrated that abundant entorhinal cortical innervation and efficient dendritic propagation enable hippocampal CA2 pyramidal neurons to produce robust excitation evoked by single cortical stimuli, compared with CA1. Here we uncovered, unexpectedly, that the difference in efficacy of cortical excitation varies substantially as a function of presynaptic firing rate. A burst of stimuli evokes a strongly facilitating response in CA1, but not in CA2. As a result, the postsynaptic response of CA1 and CA2 to presynaptic naturalistic firing displays contrasting temporal dynamics, which depends on the activation of NMDARs. Thus, whereas CA2 responds to single stimuli, CA1 is selectively recruited by bursts of cortical input.


Assuntos
Região CA1 Hipocampal/fisiologia , Região CA2 Hipocampal/fisiologia , Córtex Cerebral/fisiologia , Potenciais Pós-Sinápticos Excitadores/fisiologia , Células Piramidais/fisiologia , Sinapses/fisiologia , Animais , Região CA1 Hipocampal/efeitos dos fármacos , Região CA2 Hipocampal/efeitos dos fármacos , Córtex Cerebral/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Feminino , Antagonistas de Receptores de GABA-A/farmacologia , Antagonistas de Receptores de GABA-B/farmacologia , Masculino , Camundongos , Vias Neurais/efeitos dos fármacos , Vias Neurais/fisiologia , Técnicas de Patch-Clamp , Células Piramidais/efeitos dos fármacos , Sinapses/efeitos dos fármacos
17.
Mol Neurobiol ; 58(11): 5635-5648, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34382160

RESUMO

Numerous human clinical studies have suggested that decreased locomotor activity is a common symptom of major depressive disorder (MDD), as well as other psychiatric diseases. In MDD, the midbrain ventral tegmental area (VTA) dopamine (DA) neurons are closely related to regulate the information processing of reward, motivation, cognition, and aversion. However, the neural circuit mechanism that underlie the relationship between VTA-DA neurons and MDD-related motor impairments, especially hypolocomotion, is still largely unknown. Herein, we investigate how the VTA-DA neurons contribute to the hypolocomotion performance in chronic social defeat stress (CSDS), a mouse model of depression-relevant neurobehavioral states. The results show that CSDS could affect the spontaneous locomotor activity of mice, but not the grip strength and forced locomotor ability. Chemogenetic activation of VTA-DA neurons alleviated CSDS-induced hypolocomotion. Subsequently, quantitative whole-brain mapping revealed decreased projections from VTA-DA neurons to substantia nigra pars reticulata (SNr) after CSDS treatment. Optogenetic activation of dopaminergic projection from VTA to SNr with the stimulation of phasic firing, but not tonic firing, could significantly increase the locomotor activity of mice. Moreover, chemogenetic activation of VTA-SNr dopaminergic circuit in CSDS mice could also rescued the decline of locomotor activity. Taken together, our data suggest that the VTA-SNr dopaminergic projection mediates CSDS-induced hypolocomotion, which provides a theoretical basis and potential therapeutic target for MDD.


Assuntos
Dopamina/fisiologia , Neurônios Dopaminérgicos/fisiologia , Locomoção , Vias Neurais/fisiopatologia , Parte Reticular da Substância Negra/fisiopatologia , Derrota Social , Estresse Psicológico/fisiopatologia , Área Tegmentar Ventral/fisiopatologia , Animais , Channelrhodopsins/genética , Channelrhodopsins/metabolismo , Doença Crônica , Clozapina/análogos & derivados , Clozapina/farmacologia , Transtorno Depressivo Maior/fisiopatologia , Modelos Animais de Doenças , Genes Reporter , Vetores Genéticos/administração & dosagem , Força da Mão , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Vias Neurais/efeitos dos fármacos , Optogenética , Receptor Muscarínico M3/genética , Receptor Muscarínico M3/metabolismo , Proteínas Recombinantes/metabolismo , Teste de Desempenho do Rota-Rod , Estresse Psicológico/etiologia , Tirosina 3-Mono-Oxigenase/genética , Tirosina 3-Mono-Oxigenase/metabolismo
18.
Front Neural Circuits ; 15: 659280, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34322001

RESUMO

Corticofugal projections outnumber subcortical input projections by far. However, the specific role for signal processing of corticofugal feedback is still less well understood in comparisonto the feedforward projection. Here, we lesioned corticothalamic (CT) neurons in layers V and/or VI of the auditory cortex of Mongolian gerbils by laser-induced photolysis to investigate their contribution to cortical activation patterns. We have used laminar current-source density (CSD) recordings of tone-evoked responses and could show that, particularly, lesion of CT neurons in layer VI affected cortical frequency processing. Specifically, we found a decreased gain of best-frequency input in thalamocortical (TC)-recipient input layers that correlated with the relative lesion of layer VI neurons, but not layer V neurons. Using cortical silencing with the GABA a -agonist muscimol and layer-specific intracortical microstimulation (ICMS), we found that direct activation of infragranular layers recruited a local recurrent cortico-thalamo-cortical loop of synaptic input. This recurrent feedback was also only interrupted when lesioning layer VI neurons, but not cells in layer V. Our study thereby shows distinct roles of these two types of CT neurons suggesting a particular impact of CT feedback from layer VI to affect the local feedforward frequency processing in auditory cortex.


Assuntos
Apoptose/fisiologia , Córtex Auditivo/fisiologia , Retroalimentação Fisiológica/fisiologia , Lasers/efeitos adversos , Neurônios/fisiologia , Tálamo/fisiologia , Estimulação Acústica/métodos , Animais , Apoptose/efeitos dos fármacos , Córtex Auditivo/efeitos dos fármacos , Córtex Auditivo/patologia , Retroalimentação Fisiológica/efeitos dos fármacos , Agonistas de Receptores de GABA-A/farmacologia , Gerbillinae , Masculino , Vias Neurais/efeitos dos fármacos , Vias Neurais/patologia , Vias Neurais/fisiologia , Neurônios/efeitos dos fármacos , Neurônios/patologia , Tálamo/efeitos dos fármacos , Tálamo/patologia
19.
Int J Mol Sci ; 22(13)2021 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-34206635

RESUMO

White matter tract (WMT) degeneration has been reported to occur following a stroke, and it is associated with post-stroke functional disturbances. White matter pathology has been suggested to be an independent predictor of post-stroke recovery. However, the factors that influence WMT remodeling are poorly understood. Cortisol is a steroid hormone released in response to prolonged stress, and elevated levels of cortisol have been reported to interfere with brain recovery. The objective of this study was to investigate the influence of corticosterone (CORT; the rodent equivalent of cortisol) on WMT structure post-stroke. Photothrombotic stroke (or sham surgery) was induced in 8-week-old male C57BL/6 mice. At 72 h, mice were exposed to standard drinking water ± CORT (100 µg/mL). After two weeks of CORT administration, mice were euthanised and brain tissue collected for histological and biochemical analysis of WMT (particularly the corpus callosum and corticospinal tract). CORT administration was associated with increased tissue loss within the ipsilateral hemisphere, and modest and inconsistent WMT reorganization. Further, a structural and molecular analysis of the WMT components suggested that CORT exerted effects over axons and glial cells. Our findings highlight that CORT at stress-like levels can moderately influence the reorganization and microstructure of WMT post-stroke.


Assuntos
Corticosterona/administração & dosagem , Gliose/metabolismo , Gliose/patologia , Vias Neurais/efeitos dos fármacos , Acidente Vascular Cerebral/metabolismo , Substância Branca/efeitos dos fármacos , Substância Branca/fisiologia , Animais , Axônios/metabolismo , Corpo Caloso/efeitos dos fármacos , Corpo Caloso/metabolismo , Corpo Caloso/patologia , Modelos Animais de Doenças , Progressão da Doença , Suscetibilidade a Doenças , Gliose/tratamento farmacológico , Gliose/etiologia , Imuno-Histoquímica , Masculino , Camundongos , Bainha de Mielina/efeitos dos fármacos , Bainha de Mielina/metabolismo , Oligodendroglia/efeitos dos fármacos , Oligodendroglia/metabolismo , Estresse Fisiológico/efeitos dos fármacos , Acidente Vascular Cerebral/tratamento farmacológico , Acidente Vascular Cerebral/etiologia , Acidente Vascular Cerebral/patologia
20.
Neuron ; 109(16): 2604-2615.e9, 2021 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-34242565

RESUMO

Nicotine stimulates dopamine (DA) neurons of the ventral tegmental area (VTA) to establish and maintain reinforcement. Nicotine also induces anxiety through an as yet unknown circuitry. We found that nicotine injection drives opposite functional responses of two distinct populations of VTA DA neurons with anatomically segregated projections: it activates neurons that project to the nucleus accumbens (NAc), whereas it inhibits neurons that project to the amygdala nuclei (Amg). We further show that nicotine mediates anxiety-like behavior by acting on ß2-subunit-containing nicotinic acetylcholine receptors of the VTA. Finally, using optogenetics, we bidirectionally manipulate the VTA-NAc and VTA-Amg pathways to dissociate their contributions to anxiety-like behavior. We show that inhibition of VTA-Amg DA neurons mediates anxiety-like behavior, while their activation prevents the anxiogenic effects of nicotine. These distinct subpopulations of VTA DA neurons with opposite responses to nicotine may differentially drive the anxiogenic and the reinforcing effects of nicotine.


Assuntos
Ansiedade/tratamento farmacológico , Vias Neurais/efeitos dos fármacos , Nicotina/farmacologia , Agonistas Nicotínicos/farmacologia , Área Tegmentar Ventral/efeitos dos fármacos , Tonsila do Cerebelo/efeitos dos fármacos , Tonsila do Cerebelo/metabolismo , Animais , Ansiedade/induzido quimicamente , Ansiedade/fisiopatologia , Dopamina/metabolismo , Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/fisiologia , Masculino , Camundongos , Vias Neurais/fisiologia , Nicotina/metabolismo , Núcleo Accumbens/efeitos dos fármacos , Núcleo Accumbens/fisiologia , Receptores Nicotínicos/efeitos dos fármacos , Receptores Nicotínicos/metabolismo , Reforço Psicológico , Área Tegmentar Ventral/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...